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ABSTRACT 

APL is used for processing arrays. This 
is very different from traditional 
programming languages, which process single 
numbers and characters. This difference 
requires different programming methods. 
Such methods are array oriented. ~everal 
approaches to creating array oriented APL 
programs are explained here. 

INTRODUCTION 

Language expresses thought. Most people 
would agree with this. But fewer people 
recognize that language influences thought. 
Study of other cultures shows that they 
understand the universe differently than 
Westerners. More importantly, their 
languages provide different ways of 
describing the universe. While you can't 
determine which came first, the language or 
the culture, certainly one reinforces the 
other. "We see and hear and otherwise 
experience very largely as we do because the 
language habits of our community predispose 
certain choices of interpretation."[l] 

The premise of this paper is that the 
computer language you use influences how you 
understand and solve problems. APL presents 
a very different way of looking at 
information processing than other languages. 
Those who use it well have learned to see in 
this 'different way'. Those who want to use 
it well need to learn how. 

The difference in the APL world view is 
based upon how data is structured: A 
traditional programming language, like 
FORTRAN, presents one view. You see an 
array of data as a bunch of numbers or 
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characters which can be forced to reside 
next to each other in memory by giving them 
a common name. In APL, you see an array of 
data as a unit. This unit is used as a 
whole, but can be broken into smaller pieces 
as the need arises. 

The purpose of this paper is to explain 
some methods which can be used to derive 
array oriented solutions to data processing 
problems. The following methods will be 
explored. 

i) Value First, Then Shape; 
2) Shape First, Then Value; 
3) Data Transformation; 
4) Loop First; 
5) Think Big; 
6) Function Listing; 
7) Synonym Search. 

These methods are heuristics. A 
heuristic is the opposite of an algorithm. 
An algorithm is a set of precisely defined 
steps which always lead to a desired result. 
An algorithm is a recipe. A heuristic is a 
guideline which can help you find a solution 
to a problem. A heuristic is a trick, which 
experience has shown to often be useful. 
There is no guarantee that a heuristic will 
produce a useful result. 

VALUE FIRST, THEN SHAPE 

The concept behind this method is that 
every element in an array has two 
attributes-- value and position. We can 
extend this to say that an array has two 
attributes-- values and shape. So, to 
obtain a desired result, we have a method 
which has two steps. 
i) Create an array which contains all the 
desired values. It may also contain some 
values you don't need. 
2) Get the desired values in the proper 
shape. This may mean removing unwanted 
values. 

An example of this method is an idiom for 
creating all the integers between two 
positive integers: (LO-i)+iHI. If L0÷3 and 
HI÷7, this would execute as shown. 
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(3-i)÷t7 
2~i 2 3 4 5 6 7  
34567 

The Index Generator creates all the 
desired values, as well as some unwanted 
ones. The Drop function then removes the 
dross. This could also have been written in 
either of the following ways. 

(LOaHI) ~HI ÷,HI 
(i+LO-HI) + ,HI 

As with the first expression, a structural 
selection function is applied to a set of 
generated data to obtain the desired result. 

A second example of this approach is a 
solution to the problem of allowing vector 
arguments to the Index Generator. When we 
give our INDEXGEN function 2534 as an 
argument, we want I 2 i 2345 i 23 i 23 
4 as the result. 

This solution creates all possible 
requested integers, and then determines 
which to compress out. 

V INTEGERS~-INDEXGEN1 LENGTH ;MAX 
[ 1] MAX÷[/LENGTH 
[2] INTEGERS÷((pLENGTH),MAX)p*MAX 
[3] INTEGERS÷(,LENGTHo.aIMAX)/,INTEGERS V 

If the argument is 4 2 3, it will execute 
as shown. 

[ I ] MAX"4 
[2] INTEGERS~'I 2 34 

I 2 3 4 
1234 

[3] INTEGERS÷(,1 1 1 1)~,INTEGERS 
1100 
1 1 1  0 

INTEGERS÷i 2 3 4 1 2 1 2 3 

SHAPE FIRST, THEN VALUE 

This method is related to the first. 
Here we create an array which has the right 
shape, and then adjust the values where 
needed. An example is a different approach 
to the problem discussed above. This 
expression will give all integers between 
any two integers: (L0-i)+ii+HI-L0. If L0÷-3 
and HI÷4, this would execute as shown. 

( - 3 " - 1 )  + l 1 + 4 - - 3  
-4+Ii+7 
-4+i 2 3 4 5 6 7 8 

3 2 1 0 1 2 3 4  

With this method, you begin with a 
structural function which can force the 
desired shape. Then you use a mathematical 
function to alter the values as necessary. 
Here the structural function is the Index 
Generator and the mathematical function is 
Addition. 

A second example of this approach is 
another solution to the Index Generator 

vector argument problem. This solution 
creates an array of numbers of the right 
length. Then it does arithmetic to obtain 
the correct values. 

V INTEGERS÷INDEXGEN2 LENGTH 
[1] INTEGERS÷(+/LENGTH)pl 
/2] INTEGERS[i++\-I+LENGTH]÷i--I÷LENGTH 
[3] INTEGERS÷+kINTEGERS V 

If the argument is 4 2 3 ,  it will execute 
as shown. 

/I] INTEGERS ÷ 111 I 1 11 1 1 
[2] INTEGERS÷i 111 -3 1 -i i 1 
[3] INTEGERS÷i 2 3 4 1 2 1 2  3 

A final example is the idiom which 
creates a row oriented matrix out of a 
scalar, vector, or matrix: 
(I[-2+pARRAY)pARRAY. The important part of 
this idiom is inside the parentheses. If 
the array is a scalar, we want the 
calculated shape to be i I. If it is a 
vector of N elements, we want a shape of 
I,N. If it is a matrix, we want the same 
shape that it currently has. First we use 
the structural function Take to force the 
shape to have 2 elements. Then we use the 
mathematical function Maximum to give the 
shape meaningful values. 

DATA TRANSFORMATIONS 

The data transformations method begins 
with the same assumption as the 'Black Box' 
philosophy. That is, a function may be 
viewed as an electronic 'black box'. 
Information is fed into it. The information 
is transformed in some useful manner, and 
transmitted back out. You can't see how it 
works, however. Its walls are opaque. 

If your black box breaks down, how would 
you go about replacing it? You would have 
to invent a new one. You might do that in 
the following way. 

i) Pick an array which is a 
representative input. It should contain the 
important possible variations. Write it 
down at the top of your paper. 

2) Determine what the output of the black 
box would be if it was given your input. 
Write the output array at the bottom of the 
paper. 

3) You may work down the page, up the 
page, or both. When working down, write 
down an array which is a possible 
transformation of the one above. Also write 
down, in natural language, what the 
transformation is. Put it between the two 
arrays. DON'T try to come up with an APL 
expression yet. When working up the page, 
write down an array which is a possible 
source of the array below it, if it was 
appropriately transformed. Write down in 
natural language, between the arrays, what 
the transformation is. 
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4) When you have a series of 
transformations which take you from the top 
to the bottom of the page, you are ready to 
start writing in APL. You should have a 
natural language statement between each 
array which describes the transformation. 
Write an APL expression which will do each 
transformation. Combine them as necessary. 
Your data transformer is now ready. 

An example of this method is the 
derivation of an idiom for generating 
expansion vectors from boolean location 
vectors. By location vector, I mean a 
boolean vector, in which l's indicate the 
position of some value or sub-array to be 
processed. In this case, the process is to 
expand a fill element after the identified 
element or sub-array. 

A representative input would be 0 i 0 0 1 
0 0 0 I I. The corresponding output array 
would be I i 0 i I i 0 i i i I 0 I 0. The 
overall process could be described as 
transforming O'S into l'S, and l'S into i 0 
pairs. 

Working from the bottom, I could say that 
one transformation would be to group i 0 
pairs together, and separate single l's from 
them. If I group things by putting them on 
separate rows of my paper, I get the 
following. 

1 
1 0  
1 
1 
1 
1 0  
1 
1 
1 
1 0  
1 0  

Unfortunately, this isn't a rectangular 
array. So it won't work. But it does let 
me see the problem in a different light. 
How could I make it a rectangular array? I 
could fill in the holes, with O's or l's, on 
the right or the left. These possibilities 
are listed below. 

ONE ONE ZERO ZERO 
LEFT RIGHT LEFT RIGHT 
I i I I 0 I i 0 
i 0 i 0 10 I 0 
I i I 1 01 10 
11 1 1 01 I 0 
1 0  1 0  1 0  1 0  
1 1 1 1 0 1  1 0  
1 1 1 1 0 1  1 0  
1 1 1 1  0 1  1 0  
1 0  1 0  1 0  1 0  
1 0  1 0 1 0  1 0  

The first two give the same result. The 
last one loses information, since all rows 
are the same. So, we will work with the 
third. Our choice is reinforced by the fact 

that column 1 of the third table is 
identical to our input array. , 

So our transformation from the bottom is 
the the following. Group 1 0 pairs 
together, each in a separate row. Put each 
single 1 on a separate row, and put a 0 to 
its left. But this is backwards. What we 
want is a transform which will get us from 
the table of 2 columns to the list. This 
transform starts by removing the first 
element in a row if it is a 0. Otherwise, 
the entire row is selected. After selecting 
the data, the remnants are raveled. 

Since we noticed that this table contains 
our input, let's see if we can transform our 
input into it. If you look at it carefully, 
you will see that the first column is our 
input. The second column is the negation of 
our input. So now we have a transform 
between steps 1 and 2, and steps 2 and 3. 

Now we can write APL expressions. The 
first transformation is TABLE+BOOL,[i.5] 
~BOOL. The second one is 
(.TABLE[;i],I)/.TABLE. We can combine them 
as (,BOOL,[i.5] i)/,BOOL,[I.5]~BOOL and we 
have solved our problem. 

The Data Transformation method is a very 
effective technique for creating array 
oriented solutions to common problems. In 
addition, it has the welcome side effect of 
making writing inverse functions much 
easier, because you have done much of the 
preparation. 

LOOP FIRST 

Good APL programmers avoid looping. This 
is necessary because almost all current APL 
implementations are interpreters. 
Interpreters analyze a statement every time 
it is executed. This overhead makes 
interpretive looping expensive. It is 
possible to largely avoid looping in APL. 
This is because much of the explicit looping 
required with other languages is done 
implicitly by APL primitives. 

Given these facts, it may seem odd that I 
suggest that you use looping as a means of 
building array oriented solutions. But the 
method is quite effective. It has four 
steps. 

i) Build a looping solution to your problem. 
2) Determine what is the essential work 
being done inside the loop. 
3) Find an algorithm which does in parallel 
to all parts of the array what the loop was 
doing serially to one part of the array at a 
time. 
4) Build a non-looping solution to your 
problem. 

An example of this method is given below. 
Let's say you want to build a function which 
translates the elements of an array. The 
left argument will contain the values to be 
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changed and their replacements. The right 
argument will be the array to be changed. 
The result will be the new array. A use of 
such a function would be to convert all the 
special characters (Backspace, Linefeed, 
etc.) in a text into printable characters, 
without altering the regular characters. 

A looping version of this function is 
shown below. 

V ARRAY+TABLE TRANSLATE1 ARRAY 
;OLD;NEW;SHAPE~CTR;LIMIT 
[i] OLD÷TABLE[;1] 
[2] NEW+TABLE[;2] 
[3] SHAPE+pARRAY 
[4] ARRAY÷,ARRAY 
[5] CTR+O 
[6] LIMIT÷pOLD 
[7] LOOP:+(LIMIT<CTR÷CTR+i)pEND 
[8] ARRAY[(ARRAY=OLD[CTR])/~pARRAY]÷ 

NEW[CTR] 
[9] ~LOOP 
[10] END:ARRAY÷SHAPEpARRAY V 

We recognize that we can take the search 
for elements to be changed out of the loop. 
That gives us version 2. 

V ARRAY+TABLE TRANSLATE2 ARRAY 
;OLD;NEW;SHAPE~CTR;LIMIT;SELECT;CHANGE 
[1] OLD÷TABLE[;1] 
[2] NEW÷TABLE[;2] 
[3] SHAPE+pARRAY 
[4] ARRAY+,ARRAY 
[5] SELECT+ARRAY¢OLD 
[6] CHANGE+SELECT/ARRAY 
[7] CTR+O 
[8] LIMIT+pOLD 
[9] LOOP:+(LIMIT<CTR÷CTR+i)pEND 
[10] CHANGE[(CHANGE=OLD[CTR])/~pARRAY]÷ 

NEW[CTR] 
[11] +LOOP 
[12] END:ARRAY[SELECT/tpSELECT]÷CHANGE 
[13] ARRAY÷SHAPEpARRAY V 

Now the only work being done inside the loop 
is working with elements which will be 
changed. We can go one step further. We 
can use the translation idiom NEW[OLDiDATA] 
and do all of the substitutions 
simultaneously. 

V ARRAY+TABLE TRANSLATE3 ARRAY 
;SHAPE,SELECT 
/I] SHAPE÷pARRAY 
[2] ARRAY+,ARRAY 
[3] SELECT+ARRAYeTABLE[;I] 
[4] ARRAY[SELECT/IpSELECT]÷ 

TABLE[TABLE[;i]*SELECT/ARRAY;2] 
[5] ARRAY+SHAPEpARRAY V 

Here is a second example of the Loop 
First approach. We will derive idioms for 
finding unique elements ih a vector. A 
looping solution is listed below. 

V NUB+UNIQUE1 SET;CTR;LMT 
[1] NUB÷~O 
[ 2 ] CTR÷O 
[ 3 ] LMT÷pSET 
[4] LOOP:÷(LMT<CTR÷CTR+I)/END 
[5] ÷(SET[CTR]cNUB)/LOOP 
/6] NUB+NUB,SET[CTR] 
[7] ÷LOOP 
[ 8 ]  END: V 

This function is very similar to solutions 
in other languages. It would be virtually 
identical if the use of ~ were changed to a 
loop also. 

We inspect the inside of the loop for the 
essence of the problem. The search for an 
element in the result really is a search for 
the element in the original set. After all, 
the result comes from the original set. But 
if we try XcX directly, we don't get a 
useful result. What other ways can we 
search an array for its elements? We can 
say XiX. If we remember that searching is 
comparison, Xo.=X also fills the bill. And 
since sorting requires the comparison of the 
elements in an array against each other, 
X[~X] may also help. 

We choose to ignore the line after the 
search statement. Since this is an 
iterative process, it must have a way of 
building up a result. So the catenation is 
really just part of the bookkeeping caused 
by using a loop. The same rule applies when 
an array is initialized, and then written 
over piece by piece in a loop. 

Let's choose a sample array and try out 
our expressions. 
Let X÷'THE CAT IN THE HAT'. 
X~X gives 
1 2 3 4 5 6 1 4 9 1 0 4 1 2 3 4 2 6 1 .  
Xo.=X gives 
1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1  
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0  
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0  
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0  
1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1  
0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0  
0 000 0 0 00 1 00 0 0 0 0 00 0 
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0  
0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0  
1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 _ 0 1  
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0  
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0  
0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0  
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0  
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0  
1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1  

X[~[3AVIX] gives ' AACEEHHHINTTT' 

In the first case, we see that duplicates 
all have the same index position. In the 
second, we notice that if we could set to 
zero all but the first 1 in each row, the 
main diagonal would identify the unique 
elements. In the third case, we observe 
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that if we could identify the first element 
in each group, we would have the unique 
elements. 

These observations lead us to three 
different ways to select unique elements. 
Questions of efficiency depend on the 
implementation you are using. 

V NUB+UNIQUE2 SET 
[i] NUB+((SETISET)=~pSET)/SET V 

V NUB÷UNIQUE3 SET 
/I] NUB+(I I ~<\SETo.=SET)/SET V 

V NUB+UNIQUE4 SET 
[1] SET+SET[~SET] ~ SET[DAV~SET] FOR CHARS 
[2] NUB+(SET~-i¢SET)/SET V 

We have seen that starting with a looping 
solution provides insight into the problem. 
It also gives you a valuable prototype which 
can be used in testing the final version. 
You end up with an array oriented solution 
to your problem. 

THINK BIG 

Thinking big means looking beyond your 
limited horizons. For most of us, that 
means moving beyond matrices to arrays of 3 
or more dimensions. Even if the target 
array you want to produce may be a vector or 
matrix, this approach could help you. There 
are 4 steps. 

i) You must be aware of which APL primitives 
can produce an array whose rank is greater 
than the rank of either argument. These are 
Reshape, Indexing, Lamination, Encode, and 
Outer Product. 
2) Try to picture your input data arranged 
in a higher order array. What does each 
dimension represent? Write it down. 
3) Choose one of the functions listed above 
to build your array. Work out the 
transformation. 
4) Work out the transformation which will 
take the higher order array and transform it 
into what you want. 

An example of this aproach is a solution 
to the problem of computing variances. The 
most common variance computation is 
comparing Budget figures to Actuals. 
Usually, there are two matrices-- Budget and 
Actual. Each has columns related to time, 
(months, quarters, years), and rows related 
to accounts, products, locations, etc. The 
desired result has as many rows as the 
original matrices, but has 3 times as many 
columns as the originals. The columns are 
to be Period I Budget, Actual, Variance; 
Period II Budget, Actual, Variance, etc. 

Since the Budget and Actual matrices are 
the same shape, we can use Lamination to 
build a cube. The Dew dimension represents 
type of data. To it, we cah catenate the 
difference between the two planes. Now we 
have all the data in the cube. We need to 

re-arrange the data so that related columns 
are together, and then convert it to a 
matrix. Dyadic Transpose can shuffle the 
columns, and Reshape finishes the task. 

V R+B VARIANCE A 
[ I ]  R÷(B,[O.5] A ) , [ i ]  B-A 
[2] R÷((-2+pR),x/-2÷pR)p 3 i 2 ~R V 

Another example of this method is the 
problem of element replacement. In this 
situation, we would like to replace every 
occurrence of a designated scalar found in a 
vector by a group of scalars. Traditional 
approaches to this problem expand the vector 
to the proper shape, and insert using 
indexing. 

V VECTOR+VECTOR EREPLACE1 PARMS 
;LOCATIONS;POSITIONS;EXPAND 
[1] LOCATIONS÷VECTOR=i÷PARMS 
[2] POSITIONS+LOCATIONS/IpLOCATIONS 
[3] LENGTH+-2+i[p,PARMS 
[4] EXPAND+ 

((p,VECTOR)+LENGTHxpPOSITIONS)pO~O 
[5] EXPAND[(POSITIONS+LENGTHx 1+ 

IpPOSITIONS)o.+-i+~LENGTH+i]+i 
[6] VECTOR÷(~EXPAND)\(~LOCATIONS)/VECTOR 
[7] VECTOR[EXPAND/~pEXPAND] ÷ 

(+/EXPAND)pl+PARMS V 

A different approach builds up an array 
which contains the original vector, the 
group of elements to replace it, and a lot 
of blanks for padding. Then it compresses 
out the element to be replaced, and the 
extra blanks. 

V VECTOR+VECTOR EREPLACE2 PARMS 
;LOCATIONS 
[i] LOCATIONS+VECTOR=I÷PARMS 
[2] VECTOR+,VECTOR,LOCATIONS~ 

((+/LOCATIONS),-i+pPARMS)pl+PARMS 
[3] VECTOR÷(,LOCATIONSo.*(pPARMS)÷i)/VECTOR 
V 

These functions are also examples of 
SHAPE FIRST, THEN VALUE and VALUE FIRST, 
THEN SHAPE, respectively. 

So far, we have created higher rank 
arrays using structural functions. But 
Encode and Outer Product can also be used to 
create such arrays. In these cases, we 
make use of a common APL coding pattern-- 
Reduction applied to the result of Inner 
Product. 

One example of this is the idiom which 
counts the number of times each element 
occurs in a vector: +/VECTORo.=VECTOR. If 
X÷'ABABCDABC', then +/Xo.=X gives 3 3 3 3 2 
I 3 3 2. Another example is the idiom for 
classifying data within numeric ranges: 
+/DATAo.>O.RANGES. If PRIMES÷2 3 5 7 ii 13 
17 19 23, then +/PRIMESo.>O 5 i0 15 20 gives 
1 1 i 2 3 3 4 4 5. The reason these idioms 
are helpful is that, while they create new 
information to be processed, they use it 
all. This stands in contrast to the 
expression i 2 2~MATRIXo.+VECTOR. This adds 

APL Thinking 216 R.C. Metzger 



the vector to each of the rows of the 
matrix. It unfortunately also creates a lot 
of data which is calculated only to be 
thrown away. The expression 
MATRIX+(pMATRIX)pVECTOR serves this need 
much better. So, if you are going to think 
big, be careful that you don't forget than 
one the reasons for APL Think is efficiency. 

SYNONYM SEARCH 

The method of synonym search is really an 
idea generating mechanism. If you have no 
idea where to begin writing an APL statement 
to solve a problem, it will help you with 
the first step. 

There are 3 parts to this approach. 
i) Write out your understanding of the 
process in natural language. 
2) Go through your description and underline 
the verbs and adverbs. 
3) Look up the verbs and adverbs in an 
alphabetized list of APL synonyms. (Such a 
list is included in the Appendix). Write 
down the associated APL primitives. 

The premise of this method is that APL 
arrays, functions, and operators are 
analagous to natural language nouns, verbs, 
and adverbs. Functions act on arrays, and 
operators modify the action of functions. 
Therefore, the verbs and adverbs in the 
process description should point you to 
functions and operators which do what you 
want. 

You will find that a few uses of this 
method will make it seem natural to you. 
Then you will be able to do it mentally 
without writing or using the list. 

FUNCTION LISTING 

This technique comes from the literature 
of creative problem solving.[2] It is a 
natural follow-on to the Synonym Search 
method. Once you have some potentially 
useful functions, how do you build a 
statement from them? You can use a 'Forced 
Relationship' technique like this to 
generate ideas. 

Here's how it works. 
i) List all of the functions you feel might 
be useful in this problem. 
2) Pair each function with every other 
function. (If you have N functions, you 
will have 2!N pairs). 
3) Go through the pairs and select those 
which are promising. 

The first step might come from another 
heuristic, llke the Synonym Search. The 
second is purely mechanical. But how do you 
decide which pairs are promising? You have 
to look for instances of common patterns and 
related functions. 

The most obvious relationships between 
functions are inverse, dual, and negation. 

If a pair you have listed is found among the 
pairs shown below, it may be of use. 

Inverses 
÷ - 

x + 
* ® 

I T 
I ¥ 

Duals 
T 'T- -  
v A 

Negations 
<a 
~> 
>K 
a< 

v~ 

Another type of relationship is when the 
range (output set) of the function executed 
first is the domain (input set) of the 
function executed second. Some of these 
relationships are listed below. When your 
pair includes one function from the left 
column, and one from the right column, you 
should explore it further. 

Doma i n Ra n@ e 
v A '~ ~ < ~ : ~ > ~ E 
V A ~ ~ V A ~ 
/ \ < ~ : a > z e 
I \ v ^ ~  
[ ]  I ~ '  

There are several common patterns that 
you see in APL idioms. These patterns occur 
because the primitives used are 
complementary to each other. Several common 
patterns are listed below. 

Left Right 
T 

Scan 
Reduction Outer Product 
Scan Outer Product 
Reduction Inner Product 
Scan Inner Product 

If your pair fits one of these patterns, it 
is a promising candidate. 

Once you've chosen some potential 
function pairs, try them out together on 
some sample data. Look for data 
transformations which resemble the one 
you're looking for. Build your statement 
from them. 

CONCLUSION 

This paper has explored several methods 
for deriving array oriented APL expressions. 
Many of these techniques are just the 
explicit statement of the thought process 
that good APL programmers go through 
unconsciously all the time. These 
techniques are a practical and effective 
means of teaching novice APL users to become 
more adept in using APL. It is my hope that 
these techniques will take away some of the 
mystique of APL programming. APL faces 
stiff competition in the programming 
language marketplace. If it is going to 
become more widely used in the face of this 
competition, effective APL techniques must 
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be understood by the average user, not just 
an elite few. 
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APPENDIX 

A l l  ^/ 
Any v/ 
Biggest [ /  
Connect 
Delete 
Expand \ 
Join 
Match ^.= 
Move [ ]  
Move 
Order [] 
Pair o. 
Product x/ 
Repeat p 
Search c 
Search , 
Select p 
Select / 
Select 
Select [] 
Shuffle 
Slice 
Smallest L/ 
Sort 
Sort 
Sum +/ 
Tip 
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