
APL THINKING
FINDING ARRAY-ORIENTED SOLUTIONS

Robert C. Metzger
Technical Manager

I.P. Sharp Associates
1200 First Federal Plaza

Rochester, NY USA 14614

ABSTRACT

APL is used for processing arrays. This
is very different from traditional
programming languages, which process single
numbers and characters. This difference
requires different programming methods.
Such methods are array oriented. ~everal
approaches to creating array oriented APL
programs are explained here.

INTRODUCTION

Language expresses thought. Most people
would agree with this. But fewer people
recognize that language influences thought.
Study of other cultures shows that they
understand the universe differently than
Westerners. More importantly, their
languages provide different ways of
describing the universe. While you can't
determine which came first, the language or
the culture, certainly one reinforces the
other. "We see and hear and otherwise
experience very largely as we do because the
language habits of our community predispose
certain choices of interpretation."[l]

The premise of this paper is that the
computer language you use influences how you
understand and solve problems. APL presents
a very different way of looking at
information processing than other languages.
Those who use it well have learned to see in
this 'different way'. Those who want to use
it well need to learn how.

The difference in the APL world view is
based upon how data is structured: A
traditional programming language, like
FORTRAN, presents one view. You see an
array of data as a bunch of numbers or

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.
©1981 ACM 0-89791-035-4/81/1000-0212 $00.75

characters which can be forced to reside
next to each other in memory by giving them
a common name. In APL, you see an array of
data as a unit. This unit is used as a
whole, but can be broken into smaller pieces
as the need arises.

The purpose of this paper is to explain
some methods which can be used to derive
array oriented solutions to data processing
problems. The following methods will be
explored.

i) Value First, Then Shape;
2) Shape First, Then Value;
3) Data Transformation;
4) Loop First;
5) Think Big;
6) Function Listing;
7) Synonym Search.

These methods are heuristics. A
heuristic is the opposite of an algorithm.
An algorithm is a set of precisely defined
steps which always lead to a desired result.
An algorithm is a recipe. A heuristic is a
guideline which can help you find a solution
to a problem. A heuristic is a trick, which
experience has shown to often be useful.
There is no guarantee that a heuristic will
produce a useful result.

VALUE FIRST, THEN SHAPE

The concept behind this method is that
every element in an array has two
attributes-- value and position. We can
extend this to say that an array has two
attributes-- values and shape. So, to
obtain a desired result, we have a method
which has two steps.
i) Create an array which contains all the
desired values. It may also contain some
values you don't need.
2) Get the desired values in the proper
shape. This may mean removing unwanted
values.

An example of this method is an idiom for
creating all the integers between two
positive integers: (LO-i)+iHI. If L0÷3 and
HI÷7, this would execute as shown.

APL Thinking 212 R.C. Metzger

(3-i)÷t7
2~i 2 3 4 5 6 7
34567

The Index Generator creates all the
desired values, as well as some unwanted
ones. The Drop function then removes the
dross. This could also have been written in
either of the following ways.

(LOaHI) ~HI ÷,HI
(i+LO-HI) + ,HI

As with the first expression, a structural
selection function is applied to a set of
generated data to obtain the desired result.

A second example of this approach is a
solution to the problem of allowing vector
arguments to the Index Generator. When we
give our INDEXGEN function 2534 as an
argument, we want I 2 i 2345 i 23 i 23
4 as the result.

This solution creates all possible
requested integers, and then determines
which to compress out.

V INTEGERS~-INDEXGEN1 LENGTH ;MAX
[1] MAX÷[/LENGTH
[2] INTEGERS÷((pLENGTH),MAX)p*MAX
[3] INTEGERS÷(,LENGTHo.aIMAX)/,INTEGERS V

If the argument is 4 2 3, it will execute
as shown.

[I] MAX"4
[2] INTEGERS~'I 2 34

I 2 3 4
1234

[3] INTEGERS÷(,1 1 1 1)~,INTEGERS
1100
1 1 1 0

INTEGERS÷i 2 3 4 1 2 1 2 3

SHAPE FIRST, THEN VALUE

This method is related to the first.
Here we create an array which has the right
shape, and then adjust the values where
needed. An example is a different approach
to the problem discussed above. This
expression will give all integers between
any two integers: (L0-i)+ii+HI-L0. If L0÷-3
and HI÷4, this would execute as shown.

(- 3 " - 1) + l 1 + 4 - - 3
-4+Ii+7
-4+i 2 3 4 5 6 7 8

3 2 1 0 1 2 3 4

With this method, you begin with a
structural function which can force the
desired shape. Then you use a mathematical
function to alter the values as necessary.
Here the structural function is the Index
Generator and the mathematical function is
Addition.

A second example of this approach is
another solution to the Index Generator

vector argument problem. This solution
creates an array of numbers of the right
length. Then it does arithmetic to obtain
the correct values.

V INTEGERS÷INDEXGEN2 LENGTH
[1] INTEGERS÷(+/LENGTH)pl
/2] INTEGERS[i++\-I+LENGTH]÷i--I÷LENGTH
[3] INTEGERS÷+kINTEGERS V

If the argument is 4 2 3 , it will execute
as shown.

/I] INTEGERS ÷ 111 I 1 11 1 1
[2] INTEGERS÷i 111 -3 1 -i i 1
[3] INTEGERS÷i 2 3 4 1 2 1 2 3

A final example is the idiom which
creates a row oriented matrix out of a
scalar, vector, or matrix:
(I[-2+pARRAY)pARRAY. The important part of
this idiom is inside the parentheses. If
the array is a scalar, we want the
calculated shape to be i I. If it is a
vector of N elements, we want a shape of
I,N. If it is a matrix, we want the same
shape that it currently has. First we use
the structural function Take to force the
shape to have 2 elements. Then we use the
mathematical function Maximum to give the
shape meaningful values.

DATA TRANSFORMATIONS

The data transformations method begins
with the same assumption as the 'Black Box'
philosophy. That is, a function may be
viewed as an electronic 'black box'.
Information is fed into it. The information
is transformed in some useful manner, and
transmitted back out. You can't see how it
works, however. Its walls are opaque.

If your black box breaks down, how would
you go about replacing it? You would have
to invent a new one. You might do that in
the following way.

i) Pick an array which is a
representative input. It should contain the
important possible variations. Write it
down at the top of your paper.

2) Determine what the output of the black
box would be if it was given your input.
Write the output array at the bottom of the
paper.

3) You may work down the page, up the
page, or both. When working down, write
down an array which is a possible
transformation of the one above. Also write
down, in natural language, what the
transformation is. Put it between the two
arrays. DON'T try to come up with an APL
expression yet. When working up the page,
write down an array which is a possible
source of the array below it, if it was
appropriately transformed. Write down in
natural language, between the arrays, what
the transformation is.

R. C. Metzger 213 APL Thinking

4) When you have a series of
transformations which take you from the top
to the bottom of the page, you are ready to
start writing in APL. You should have a
natural language statement between each
array which describes the transformation.
Write an APL expression which will do each
transformation. Combine them as necessary.
Your data transformer is now ready.

An example of this method is the
derivation of an idiom for generating
expansion vectors from boolean location
vectors. By location vector, I mean a
boolean vector, in which l's indicate the
position of some value or sub-array to be
processed. In this case, the process is to
expand a fill element after the identified
element or sub-array.

A representative input would be 0 i 0 0 1
0 0 0 I I. The corresponding output array
would be I i 0 i I i 0 i i i I 0 I 0. The
overall process could be described as
transforming O'S into l'S, and l'S into i 0
pairs.

Working from the bottom, I could say that
one transformation would be to group i 0
pairs together, and separate single l's from
them. If I group things by putting them on
separate rows of my paper, I get the
following.

1
1 0
1
1
1
1 0
1
1
1
1 0
1 0

Unfortunately, this isn't a rectangular
array. So it won't work. But it does let
me see the problem in a different light.
How could I make it a rectangular array? I
could fill in the holes, with O's or l's, on
the right or the left. These possibilities
are listed below.

ONE ONE ZERO ZERO
LEFT RIGHT LEFT RIGHT
I i I I 0 I i 0
i 0 i 0 10 I 0
I i I 1 01 10
11 1 1 01 I 0
1 0 1 0 1 0 1 0
1 1 1 1 0 1 1 0
1 1 1 1 0 1 1 0
1 1 1 1 0 1 1 0
1 0 1 0 1 0 1 0
1 0 1 0 1 0 1 0

The first two give the same result. The
last one loses information, since all rows
are the same. So, we will work with the
third. Our choice is reinforced by the fact

that column 1 of the third table is
identical to our input array. ,

So our transformation from the bottom is
the the following. Group 1 0 pairs
together, each in a separate row. Put each
single 1 on a separate row, and put a 0 to
its left. But this is backwards. What we
want is a transform which will get us from
the table of 2 columns to the list. This
transform starts by removing the first
element in a row if it is a 0. Otherwise,
the entire row is selected. After selecting
the data, the remnants are raveled.

Since we noticed that this table contains
our input, let's see if we can transform our
input into it. If you look at it carefully,
you will see that the first column is our
input. The second column is the negation of
our input. So now we have a transform
between steps 1 and 2, and steps 2 and 3.

Now we can write APL expressions. The
first transformation is TABLE+BOOL,[i.5]
~BOOL. The second one is
(.TABLE[;i],I)/.TABLE. We can combine them
as (,BOOL,[i.5] i)/,BOOL,[I.5]~BOOL and we
have solved our problem.

The Data Transformation method is a very
effective technique for creating array
oriented solutions to common problems. In
addition, it has the welcome side effect of
making writing inverse functions much
easier, because you have done much of the
preparation.

LOOP FIRST

Good APL programmers avoid looping. This
is necessary because almost all current APL
implementations are interpreters.
Interpreters analyze a statement every time
it is executed. This overhead makes
interpretive looping expensive. It is
possible to largely avoid looping in APL.
This is because much of the explicit looping
required with other languages is done
implicitly by APL primitives.

Given these facts, it may seem odd that I
suggest that you use looping as a means of
building array oriented solutions. But the
method is quite effective. It has four
steps.

i) Build a looping solution to your problem.
2) Determine what is the essential work
being done inside the loop.
3) Find an algorithm which does in parallel
to all parts of the array what the loop was
doing serially to one part of the array at a
time.
4) Build a non-looping solution to your
problem.

An example of this method is given below.
Let's say you want to build a function which
translates the elements of an array. The
left argument will contain the values to be

APL Thinking 214 R.C. Metzger

changed and their replacements. The right
argument will be the array to be changed.
The result will be the new array. A use of
such a function would be to convert all the
special characters (Backspace, Linefeed,
etc.) in a text into printable characters,
without altering the regular characters.

A looping version of this function is
shown below.

V ARRAY+TABLE TRANSLATE1 ARRAY
;OLD;NEW;SHAPE~CTR;LIMIT
[i] OLD÷TABLE[;1]
[2] NEW+TABLE[;2]
[3] SHAPE+pARRAY
[4] ARRAY÷,ARRAY
[5] CTR+O
[6] LIMIT÷pOLD
[7] LOOP:+(LIMIT<CTR÷CTR+i)pEND
[8] ARRAY[(ARRAY=OLD[CTR])/~pARRAY]÷

NEW[CTR]
[9] ~LOOP
[10] END:ARRAY÷SHAPEpARRAY V

We recognize that we can take the search
for elements to be changed out of the loop.
That gives us version 2.

V ARRAY+TABLE TRANSLATE2 ARRAY
;OLD;NEW;SHAPE~CTR;LIMIT;SELECT;CHANGE
[1] OLD÷TABLE[;1]
[2] NEW÷TABLE[;2]
[3] SHAPE+pARRAY
[4] ARRAY+,ARRAY
[5] SELECT+ARRAY¢OLD
[6] CHANGE+SELECT/ARRAY
[7] CTR+O
[8] LIMIT+pOLD
[9] LOOP:+(LIMIT<CTR÷CTR+i)pEND
[10] CHANGE[(CHANGE=OLD[CTR])/~pARRAY]÷

NEW[CTR]
[11] +LOOP
[12] END:ARRAY[SELECT/tpSELECT]÷CHANGE
[13] ARRAY÷SHAPEpARRAY V

Now the only work being done inside the loop
is working with elements which will be
changed. We can go one step further. We
can use the translation idiom NEW[OLDiDATA]
and do all of the substitutions
simultaneously.

V ARRAY+TABLE TRANSLATE3 ARRAY
;SHAPE,SELECT
/I] SHAPE÷pARRAY
[2] ARRAY+,ARRAY
[3] SELECT+ARRAYeTABLE[;I]
[4] ARRAY[SELECT/IpSELECT]÷

TABLE[TABLE[;i]*SELECT/ARRAY;2]
[5] ARRAY+SHAPEpARRAY V

Here is a second example of the Loop
First approach. We will derive idioms for
finding unique elements ih a vector. A
looping solution is listed below.

V NUB+UNIQUE1 SET;CTR;LMT
[1] NUB÷~O
[2] CTR÷O
[3] LMT÷pSET
[4] LOOP:÷(LMT<CTR÷CTR+I)/END
[5] ÷(SET[CTR]cNUB)/LOOP
/6] NUB+NUB,SET[CTR]
[7] ÷LOOP
[8] END: V

This function is very similar to solutions
in other languages. It would be virtually
identical if the use of ~ were changed to a
loop also.

We inspect the inside of the loop for the
essence of the problem. The search for an
element in the result really is a search for
the element in the original set. After all,
the result comes from the original set. But
if we try XcX directly, we don't get a
useful result. What other ways can we
search an array for its elements? We can
say XiX. If we remember that searching is
comparison, Xo.=X also fills the bill. And
since sorting requires the comparison of the
elements in an array against each other,
X[~X] may also help.

We choose to ignore the line after the
search statement. Since this is an
iterative process, it must have a way of
building up a result. So the catenation is
really just part of the bookkeeping caused
by using a loop. The same rule applies when
an array is initialized, and then written
over piece by piece in a loop.

Let's choose a sample array and try out
our expressions.
Let X÷'THE CAT IN THE HAT'.
X~X gives
1 2 3 4 5 6 1 4 9 1 0 4 1 2 3 4 2 6 1 .
Xo.=X gives
1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1
0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0
0 000 0 0 00 1 00 0 0 0 0 00 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0
1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 _ 0 1
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1

X[~[3AVIX] gives ' AACEEHHHINTTT'

In the first case, we see that duplicates
all have the same index position. In the
second, we notice that if we could set to
zero all but the first 1 in each row, the
main diagonal would identify the unique
elements. In the third case, we observe

R. C. Metzger 215 APL Thinking

that if we could identify the first element
in each group, we would have the unique
elements.

These observations lead us to three
different ways to select unique elements.
Questions of efficiency depend on the
implementation you are using.

V NUB+UNIQUE2 SET
[i] NUB+((SETISET)=~pSET)/SET V

V NUB÷UNIQUE3 SET
/I] NUB+(I I ~<\SETo.=SET)/SET V

V NUB+UNIQUE4 SET
[1] SET+SET[~SET] ~ SET[DAV~SET] FOR CHARS
[2] NUB+(SET~-i¢SET)/SET V

We have seen that starting with a looping
solution provides insight into the problem.
It also gives you a valuable prototype which
can be used in testing the final version.
You end up with an array oriented solution
to your problem.

THINK BIG

Thinking big means looking beyond your
limited horizons. For most of us, that
means moving beyond matrices to arrays of 3
or more dimensions. Even if the target
array you want to produce may be a vector or
matrix, this approach could help you. There
are 4 steps.

i) You must be aware of which APL primitives
can produce an array whose rank is greater
than the rank of either argument. These are
Reshape, Indexing, Lamination, Encode, and
Outer Product.
2) Try to picture your input data arranged
in a higher order array. What does each
dimension represent? Write it down.
3) Choose one of the functions listed above
to build your array. Work out the
transformation.
4) Work out the transformation which will
take the higher order array and transform it
into what you want.

An example of this aproach is a solution
to the problem of computing variances. The
most common variance computation is
comparing Budget figures to Actuals.
Usually, there are two matrices-- Budget and
Actual. Each has columns related to time,
(months, quarters, years), and rows related
to accounts, products, locations, etc. The
desired result has as many rows as the
original matrices, but has 3 times as many
columns as the originals. The columns are
to be Period I Budget, Actual, Variance;
Period II Budget, Actual, Variance, etc.

Since the Budget and Actual matrices are
the same shape, we can use Lamination to
build a cube. The Dew dimension represents
type of data. To it, we cah catenate the
difference between the two planes. Now we
have all the data in the cube. We need to

re-arrange the data so that related columns
are together, and then convert it to a
matrix. Dyadic Transpose can shuffle the
columns, and Reshape finishes the task.

V R+B VARIANCE A
[I] R÷(B,[O.5] A) , [i] B-A
[2] R÷((-2+pR),x/-2÷pR)p 3 i 2 ~R V

Another example of this method is the
problem of element replacement. In this
situation, we would like to replace every
occurrence of a designated scalar found in a
vector by a group of scalars. Traditional
approaches to this problem expand the vector
to the proper shape, and insert using
indexing.

V VECTOR+VECTOR EREPLACE1 PARMS
;LOCATIONS;POSITIONS;EXPAND
[1] LOCATIONS÷VECTOR=i÷PARMS
[2] POSITIONS+LOCATIONS/IpLOCATIONS
[3] LENGTH+-2+i[p,PARMS
[4] EXPAND+

((p,VECTOR)+LENGTHxpPOSITIONS)pO~O
[5] EXPAND[(POSITIONS+LENGTHx 1+

IpPOSITIONS)o.+-i+~LENGTH+i]+i
[6] VECTOR÷(~EXPAND)\(~LOCATIONS)/VECTOR
[7] VECTOR[EXPAND/~pEXPAND] ÷

(+/EXPAND)pl+PARMS V

A different approach builds up an array
which contains the original vector, the
group of elements to replace it, and a lot
of blanks for padding. Then it compresses
out the element to be replaced, and the
extra blanks.

V VECTOR+VECTOR EREPLACE2 PARMS
;LOCATIONS
[i] LOCATIONS+VECTOR=I÷PARMS
[2] VECTOR+,VECTOR,LOCATIONS~

((+/LOCATIONS),-i+pPARMS)pl+PARMS
[3] VECTOR÷(,LOCATIONSo.*(pPARMS)÷i)/VECTOR
V

These functions are also examples of
SHAPE FIRST, THEN VALUE and VALUE FIRST,
THEN SHAPE, respectively.

So far, we have created higher rank
arrays using structural functions. But
Encode and Outer Product can also be used to
create such arrays. In these cases, we
make use of a common APL coding pattern--
Reduction applied to the result of Inner
Product.

One example of this is the idiom which
counts the number of times each element
occurs in a vector: +/VECTORo.=VECTOR. If
X÷'ABABCDABC', then +/Xo.=X gives 3 3 3 3 2
I 3 3 2. Another example is the idiom for
classifying data within numeric ranges:
+/DATAo.>O.RANGES. If PRIMES÷2 3 5 7 ii 13
17 19 23, then +/PRIMESo.>O 5 i0 15 20 gives
1 1 i 2 3 3 4 4 5. The reason these idioms
are helpful is that, while they create new
information to be processed, they use it
all. This stands in contrast to the
expression i 2 2~MATRIXo.+VECTOR. This adds

APL Thinking 216 R.C. Metzger

the vector to each of the rows of the
matrix. It unfortunately also creates a lot
of data which is calculated only to be
thrown away. The expression
MATRIX+(pMATRIX)pVECTOR serves this need
much better. So, if you are going to think
big, be careful that you don't forget than
one the reasons for APL Think is efficiency.

SYNONYM SEARCH

The method of synonym search is really an
idea generating mechanism. If you have no
idea where to begin writing an APL statement
to solve a problem, it will help you with
the first step.

There are 3 parts to this approach.
i) Write out your understanding of the
process in natural language.
2) Go through your description and underline
the verbs and adverbs.
3) Look up the verbs and adverbs in an
alphabetized list of APL synonyms. (Such a
list is included in the Appendix). Write
down the associated APL primitives.

The premise of this method is that APL
arrays, functions, and operators are
analagous to natural language nouns, verbs,
and adverbs. Functions act on arrays, and
operators modify the action of functions.
Therefore, the verbs and adverbs in the
process description should point you to
functions and operators which do what you
want.

You will find that a few uses of this
method will make it seem natural to you.
Then you will be able to do it mentally
without writing or using the list.

FUNCTION LISTING

This technique comes from the literature
of creative problem solving.[2] It is a
natural follow-on to the Synonym Search
method. Once you have some potentially
useful functions, how do you build a
statement from them? You can use a 'Forced
Relationship' technique like this to
generate ideas.

Here's how it works.
i) List all of the functions you feel might
be useful in this problem.
2) Pair each function with every other
function. (If you have N functions, you
will have 2!N pairs).
3) Go through the pairs and select those
which are promising.

The first step might come from another
heuristic, llke the Synonym Search. The
second is purely mechanical. But how do you
decide which pairs are promising? You have
to look for instances of common patterns and
related functions.

The most obvious relationships between
functions are inverse, dual, and negation.

If a pair you have listed is found among the
pairs shown below, it may be of use.

Inverses
÷ -

x +
* ®

I T
I ¥

Duals
T 'T- -
v A

Negations
<a
~>
>K
a<

v~

Another type of relationship is when the
range (output set) of the function executed
first is the domain (input set) of the
function executed second. Some of these
relationships are listed below. When your
pair includes one function from the left
column, and one from the right column, you
should explore it further.

Doma i n Ra n@ e
v A '~ ~ < ~ : ~ > ~ E
V A ~ ~ V A ~
/ \ < ~ : a > z e
I \ v ^ ~
[] I ~ '

There are several common patterns that
you see in APL idioms. These patterns occur
because the primitives used are
complementary to each other. Several common
patterns are listed below.

Left Right
T

Scan
Reduction Outer Product
Scan Outer Product
Reduction Inner Product
Scan Inner Product

If your pair fits one of these patterns, it
is a promising candidate.

Once you've chosen some potential
function pairs, try them out together on
some sample data. Look for data
transformations which resemble the one
you're looking for. Build your statement
from them.

CONCLUSION

This paper has explored several methods
for deriving array oriented APL expressions.
Many of these techniques are just the
explicit statement of the thought process
that good APL programmers go through
unconsciously all the time. These
techniques are a practical and effective
means of teaching novice APL users to become
more adept in using APL. It is my hope that
these techniques will take away some of the
mystique of APL programming. APL faces
stiff competition in the programming
language marketplace. If it is going to
become more widely used in the face of this
competition, effective APL techniques must

R. C. M e t z g e r 217 APL T h i n k i n y

be understood by the average user, not just
an elite few.

REFERENCES

[i] Language, culture, and personality,
essays l_n memory of Edward Sapir, quoted in
Language, Thought, and Rea~, Benjamin Lee
Whorf, Ed. John B. C~roll ~ambridge, MA:
The MIT Press, 1956), p. 134.

[2] Alex F. Osborn, Applied Imagination, 3rd
ed., (New York: Charles Scribners Sons,
1963), p. 214

APPENDIX

A l l ^/
Any v/
Biggest [/
Connect
Delete
Expand \
Join
Match ^.=
Move []
Move
Order []
Pair o.
Product x/
Repeat p
Search c
Search ,
Select p
Select /
Select
Select []
Shuffle
Slice
Smallest L/
Sort
Sort
Sum +/
Tip

APL Thinking 218 R.C. Metzger

